If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1536=-16t^2+320t
We move all terms to the left:
1536-(-16t^2+320t)=0
We get rid of parentheses
16t^2-320t+1536=0
a = 16; b = -320; c = +1536;
Δ = b2-4ac
Δ = -3202-4·16·1536
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-320)-64}{2*16}=\frac{256}{32} =8 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-320)+64}{2*16}=\frac{384}{32} =12 $
| -14z+1=18-13z | | 8n+10/2=5n | | (2x-11)(x-6)=666 | | z2−1000z+60775=0 | | -8r=20-7r | | 21/4-x/5=4x | | 3/4x+2=5/6x-4 | | 3/5x+1/2=4/3 | | 3w+6=30 | | 3/5x+½=4/3 | | 4x-12+16=5x-30+26 | | y=1.25+10 | | 16-7w-14=-4-6w | | 7-11y=-49 | | -3x=x^2-28 | | -16+19j=18j-9 | | 3r+75=93 | | 6c+13.94=-2.26+4.8c | | (2x)^2+4x^2=120 | | -5p-13=-6p | | (2x)^2+4x=120 | | -11y+13=-14y-2 | | 6/4.5=x/6 | | 6w+8-18w=-2-17w | | -16-11s=-10s | | 82t+66t=111 | | 12x-16=8x+24 | | -7g+15=-8g | | 7(x-6)-3=-94 | | -11p+3-11=8-10p | | -17g+16=-10-19g | | 1/4r=9 |